Dementia after Traumatic Brain Injury: What is the Pathology

Ramon Diaz-Arrastia, MD, PhD Professor, Department of Neurology University of Pennsylvania Perelman School of Medicine

Department of NEUROLOGY

A Case Report

- A 46 year old man, flag military officer
- Graduate of Service Academy
- Master's degree Physics; Business courses Harvard
- 1 prior TBI c brief LOC from boxing in college
- No FH of dementia, TBI, neurologic or psych disease

TBI at Age 46

- While sitting in a parked car, broadsided by a truck traveling ~45 mph
- + LOC at scene.
- Examination:
 - Agitated and combative. GCS 12 (4E 5M 3V),
 - Zygomatic fracture, myocardial contusion
- Witnessed generalized tonic clonic seizure in ED,
- Head CT scan:
 - Intracranial Normal- No intracerebral hemorrhage, shift or contusion
 - Multiple facial fractures

Hospital Course

- Transferred to ICU and "critical" for 3 days
- Hospitalized for 12 days with surgery for facial fractures and hyperbaric oxygen therapy for eye trauma
- Discharged home for convalescent leave with physical therapy and neurocognitive rehab
- Post-traumatic amnesia 18 days

Military Medical Board 1 month after Injury

- Residual L optic neuropathy with APD, L VI palsy
- Decreased short term memory
 - Recall 1/4 objects at 5 minutes, name current president only, unable to define the word "island", 4 animals in 1 minute
- MRI:
 - 8 mm bifrontal extra-axial fluid collections w/o mass effect;
 - increased signal intensity in the left periventricular white matter (occipital horn)
- Phenytoin changed to phenobarbital
- EEG: no focal or paroxysmal changes
- Placed on limited duty for 6 months

Military Medical Board 2 - 16 months after Injury

- Normal mental status exam;
- Subjective memory complaints
- Neuropsychological testing:

 Mild deficits in digit symbol test, Halstead, reading comprehension (12th %tile)
 - Resolve by 16 months
- Assigned limited duty because of L abducens and single post-traumatic seizure

Military Medical Board 21 months after Injury (age 48) Frank Benson (UCLA Behavioral Neurology Unit):

- Subjective word-finding difficulties; possible irritability
- Normal sleep, appetite and energy; no depression, headache, seizure, vertigo, tinnitus
- Neurological Exam: L VI, mild difficulty copying 3-D figures, Digit span (7 forward, 4 back), normal QMSE

Military Medical Board 21 months after Injury (age 48) Frank Benson (UCLA Behavioral Neurology Unit):

- "Performed excellently on series of tests difficult for individuals with frontal lobe damage."
- "Recovery far better than would be anticipated and can be said to have returned to normal"
- Assessment: "Operating well WNL; greatest problem patient's own concern about his ability to cope in periods of extreme stress"
- Fit for full duty without restrictions

Military Medical Board 4.5 years after Injury (age 51)

- Pt contemplating retirement from active duty
- On non-verbal and non-visual learning task, performed worse than on earlier testing; general memory and incidental memory markedly impaired:

	7 mos	1 year	4.5 years		
	p TBI	p TBI	p TBI		
Verbal IQ	115	118	118		
Performance IQ	117	111	108		
Full-scale IQ	116	116	113		

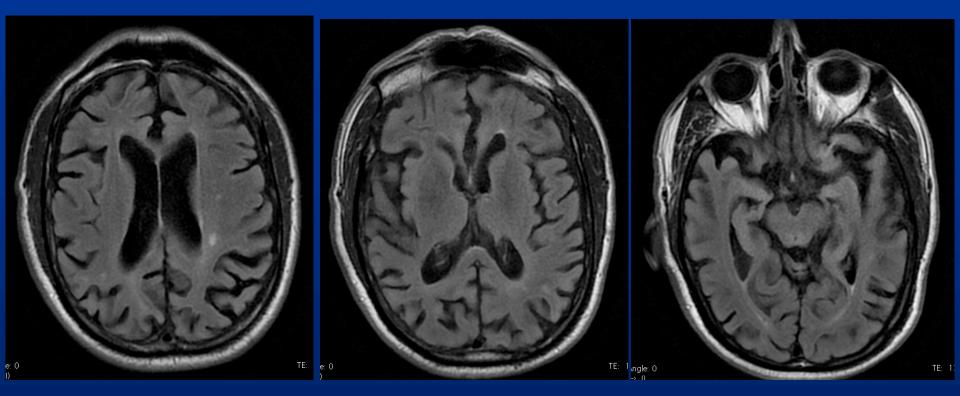
Military Medical Board 4.5 years after Injury (age 51)

- Neuropsych testing "significant deficits in bilateral fine motor slowing and bilateral sensory motor signs consistent with mild to mildly moderate global cognitive impairment"
- Medically retired with 60% VA service connected disability
 - 30% for nervous condition and memory impairment,
 - 10% for post-traumatic seizure
 - 20% for facial Fx, L abducens palsy and optic neuropathy

7.5 years p TBI (age 54)

- No complaints, working full time as financial advisor
- 11.5 years p TBI (age 58)
- c/o occasional short term memory loss (denies forgetting directions, important dates or phone numbers or getting lost)
- MMSE 30/30

12.5 years p TBI (age 59)


- Difficulty with name recall and short term memory (forgets where parked car)
- c/o fatigue
- Retires from civilian employment as financial advisor

12.5 years p TBI (age 59):

 Neuropsych testing: "Declining performance is not consistent with expected pattern of cognitive recovery and suggests the possibility of an early dementing process"

	7 mos	1 year	4.5 years	12.5 yrs	
	p TBI	p TBI	p TBI	p TBI	
Verbal IQ	115	118	118	117	
Performance IQ	117	111	108	99	
Full-scale IQ	116	116	113	108	

MRIs (21 years after TBI, age 67)

"Global volume loss. Multiple foci of hyperintense T2 signal in subcortical and periventricular white matter. No significant interval change compared to MRI 2 years prior."

13 years p TBI (age 60)

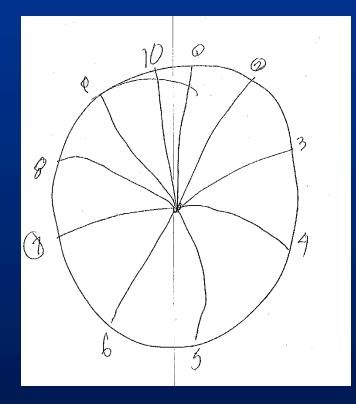
- Donepezil begun for cognitive decline,
- Depression likely secondary to cognitive disorder; Sertraline increased

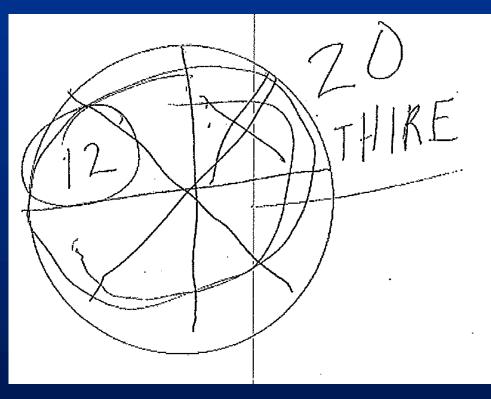
- 13.5 years p TBI (age 60)
- c/o increased irritability, sadness, decreased energy, hypersomnolence, guilt, decreased exercise tolerance; stable memory problems, frustration with performance abilities
- Add Effexor XR.
- 16.5 years p TBI (age 63)
- "Frontotemporal dementia due to TBI"
- Mood disorder due to TBI

17 years p TBI (age 64)

- Memory 0/3 at 5 minutes, problems with complex 2 step command, trouble copying figures, abnormal clock draw
- MMSE 20/30
- Spells: hyperventilation with spastic arm motion, postictal confusion with return to normal over 1-2 hours; recur every 3-4 months even with AEDs
- Neuropsych testing- deficits in all domains of cognition but particularly memory;
- most c/w cortical dementia (AD), but can't r/o FTD

20 years p TBI (age 67)


- MMSE 11/30; Second clock draw
- Spells: staring, listlessness; Increased frequency and duration of spells; EEG not epileptiform
- Recent increased agitation; patient has no memory for public behavioral outbursts, including striking companion and police being called
- Citalopram added for behavioral outbursts
- Patient moved and care for in SNF; died at age 72 severely demented 25 years after his TBI


Serial Clock Drawing

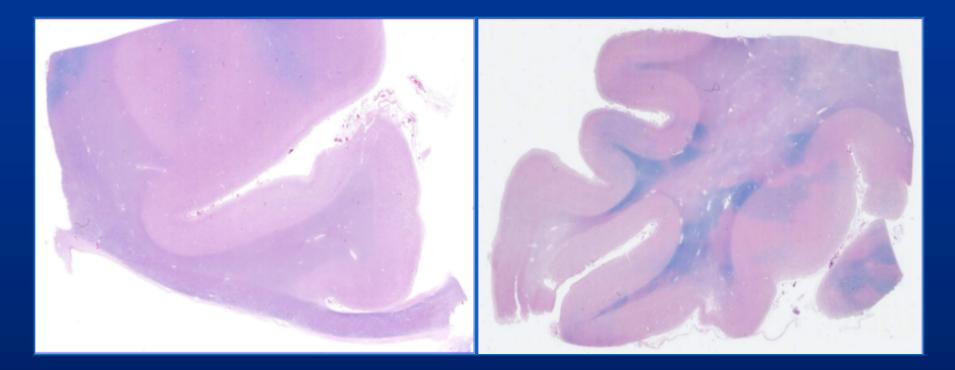
Serial clock draws (Age, Years after TBI, MMSE):

64 yo, 17 yrs, 20/30

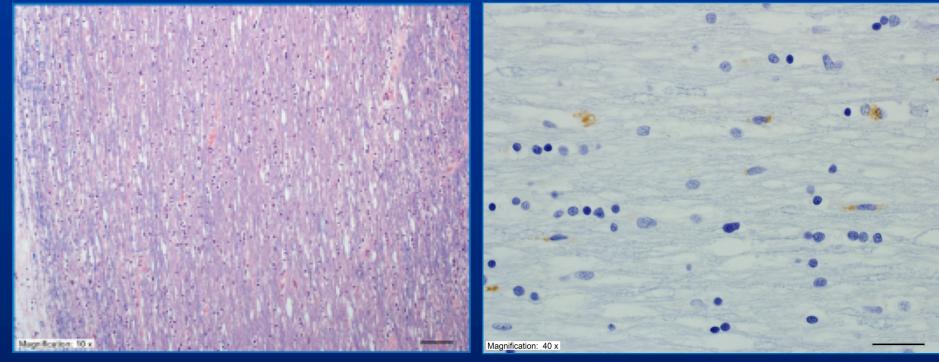
67, 20 yrs, 11/30

Summary of Case


- Moderate TBI in mid-life
- Gratifying (but perhaps incomplete) recovery over subsequent 2 years. Able to return to full duty as Flag Officer
- Progressive decline starting approximately 10 years after TBI
 - Behavioral and affective features prominent
 - Performance IQ declines faster than Verbal IQ
 - Features of Fronto-temporal Dementia
- Death within 12 years of dementia diagnosis (25 years after TBI)

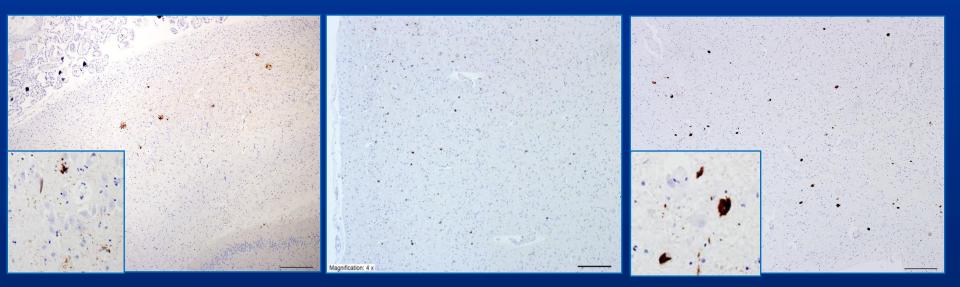

Kenney et al, J Neuropath Exp Neurol 2017

Brain Weight 930 gm.


Luxol Fast Blue-Hematoxylin Stain

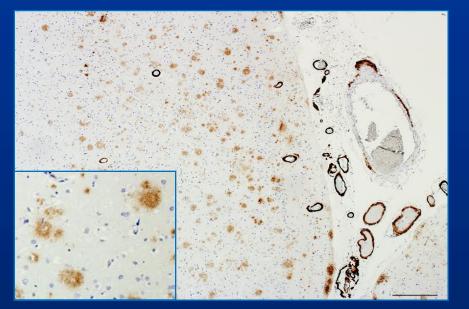
Left Splenium

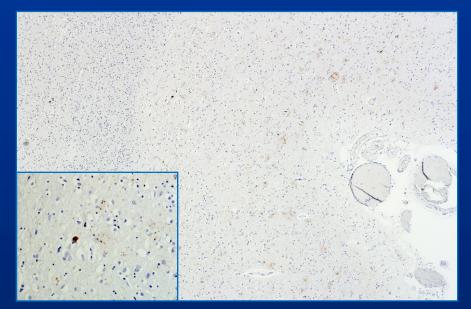
Left Superior Temporal Cortex


Posterior Corpus Callosum

LFB-H Stain

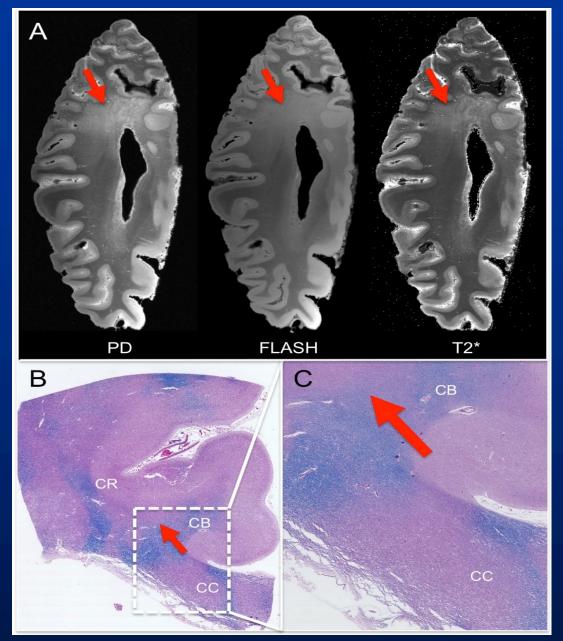
CD 68 IHC (microglia)


Tau IHC (AT8)


Hippocampus, CA1 Insular Cortex

Mamillary Body

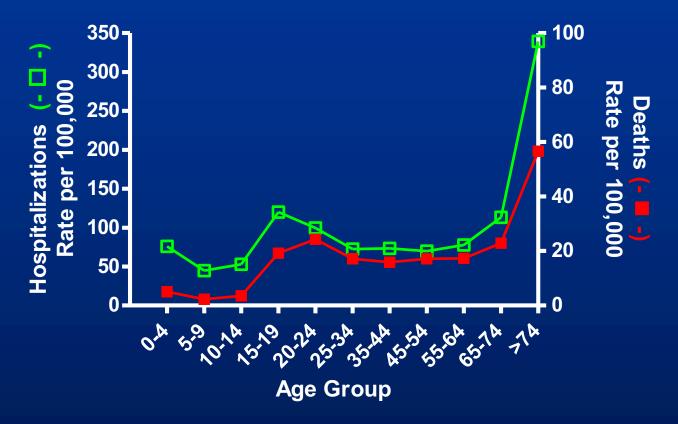
β-amyloid IHC (4G8)



Superior Middle Temporal

Superior Middle Temporal

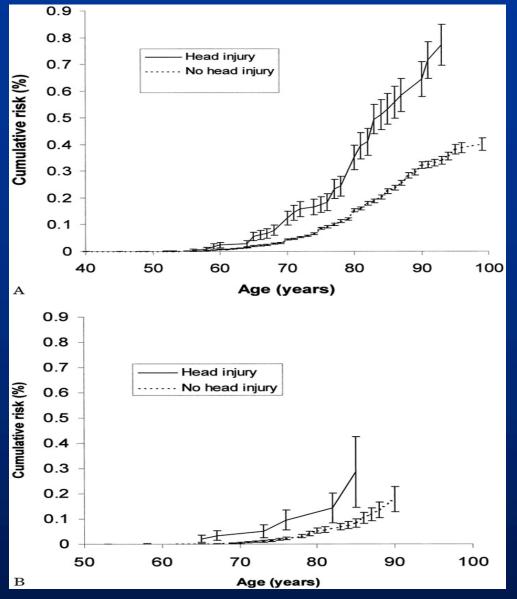
Ex-vivo MRI Histopathological Correlation



Outline of Presentation

- Epidemiology of TBI
 - With emphasis on TBI in the elderly
- Epidemiologic studies on risk of dementia after TBI
- Pathologic studies on post-TBI dementia
 - After multiple repetitive mild TBIs
 - After single moderate to severe TBI
- Analysis of NACC Database
- Military Retirement Homes Study

Epidemiology of TBI


Annual Rate of TBI-related Hospitalizations and Death, by Age

Division of Injury Response, National Center for Injury Prevention and Control Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, 2010

MIRAGE Study (n=14,668):

The cumulative risk of AD in relation to TBI among parents and siblings of patients with AD

First-degree relatives

OR 4.0 (95% CI 2.9 - 5.5) for TBI w/ LOC OR 2.0 (95% CI 1.5 - 2.7) for TBI w/o LOC

Spouses

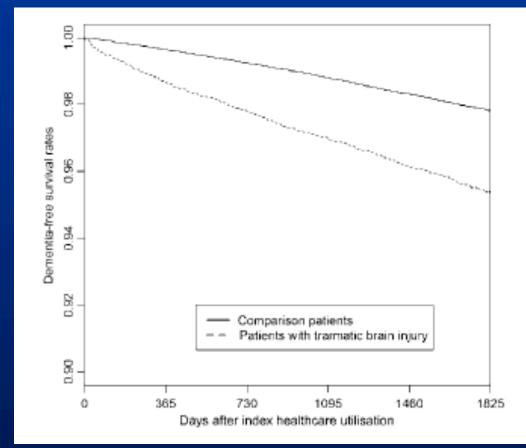
OR 9.9 (95% CI 6.5 - 15.1) for TBI w/ LOC OR 3.1 (95% CI 2.3 - 4.0) for TBI w/o LOC

Guo, Z. et al. Neurology 2000;54:1316-1323

Population-based cohort study (Taiwan)

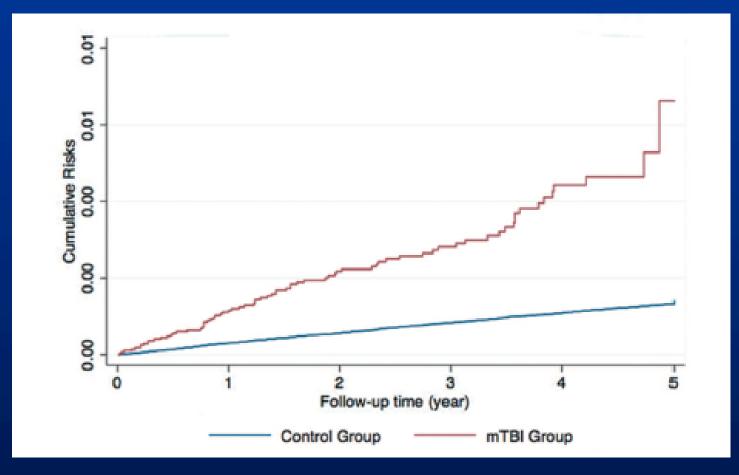
- National Health Insurance Database
 - Detailed longitudinal claims data from 1 million individuals enrolled in Taiwan National Health Insurance Program
 - 44,925 patients receiving ambulatory or inpatient hospital care for TBI between 2000 2004
 - Exclude < 15 years of age and ICU admissions
 - Exclude those with diagnosis of dementia
 - 4.5% 4-year incidence

- 224,625 non-TBI controls (matched for age and gender)


Analyze 5 years after index TBI for incident dementia

Wang et al, *JNNP* 2012;83:1180-1185

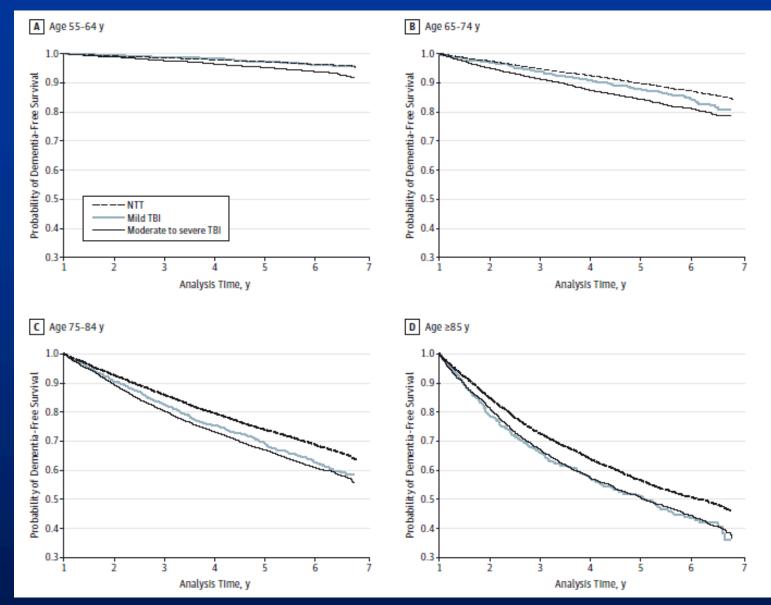
Population-based cohort study (Taiwan)


- 1196 (2.6%) TBI patients developed dementia
- vs. 3439 (1.53%) of non-TBI
- Crude HR 2.06 (95% CI 1.93 – 2.20)
- Adjusted* HR 1.68 (95% CI 1.57 – 1.80)

(*Adjusted for stroke, diabetes, hyperlipidemia, hypertension, CAD, heart failure, atrial fibrillation)

Wang et al, *JNNP* 2012;83:1180-1185

Population-based cohort study (Taiwan Study—mTBI only)


Lee et al, PLoS One 2013 8(5):e62422

Dementia Risk after TBI vs. Non-Brain Trauma

Patient Group	No. of Patients	HR (95% CI)	P Value
Aged 55-64 y (reference NTT)	40 444		
Mild TBI	4670	1.11 (0.80-1.53)	.55
Moderate to severe TBI	10 027	1.72 (1.40-2.10)	<.001
Aged 65-74 y (reference NTT)	27 991		
Mild TBI	2810	1.25 (1.04-1.51)	.02
Moderate to severe TBI	8808	1.46 (1.30-1.64)	<.001
Aged 75-84 y (reference NTT)	29 113		
Mild TBI	2800	1.21 (1.08-1.36)	<.005
Moderate to severe TBI	12 803	1.27 (1.19-1.36)	<.001
Aged ≥85 y (reference NTT)	15 314		
Mild TBI	1443	1.25 (1.09-1.44)	<.005
Moderate to severe TBI	8438	1.14 (1.06-1.24)	<.005

Gardner et al, JAMA Neurol 2014;71:1490-1497

Dementia Risk after TBI vs. Non-Brain Trauma

Gardner et al, JAMA Neurol 2014;71:1490-1497

Population-based cohort study (Sweden)

- Swedish men conscripted for military service, 1969 – 1986 (n = 811,622)
 - All underwent medical and cognitive evaluations at conscription (age 18.4 <u>+</u> 0.8 years)
- Linked to Swedish national patient register (launched in 1964)
 - Medical encounters for TBI identified via ICD codes
 - ICD codes for AD, VaD, EtOHlic dementia, dementia of unspecified type
 - Follow-up for 40 years to identify Young Onset Dementia

Nordstrom et al, Ann Neurol 2014;75:374-381

Swedish Military Conscripts Study

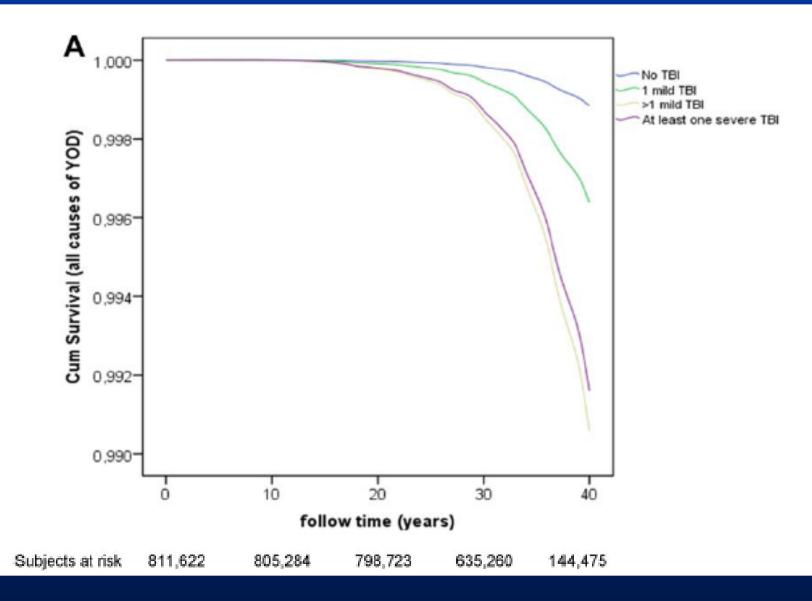
	All Cases of		Alzheimer		Other Forms of				
	Der	Dementia, $n = 566$		Dementia, n = 177			Dementia, ^a $n = 389$		
ТВІ Туре	No.	HR	95% CI	No.	HR	95% CI	No.	HR	95% CI
1 mild TBI, n = 34,698									
Age-adjusted model ^b	63	3.0	2.3-4.0	10	1.5	0.8-2.8	53	3.8	2.8-5.2
Minimally adjusted model ^c	62	1.6	1.2-2.2	10	1.3	0.7-2.5	53	1.7	1.3-2.3
Model adjusted for all confounders ^d	59	1.5	1.1-2.0	8	1.0	0.5-2.0	51	1.7	1.2-2.3
Case–control study ^e	59	1.8	1.2-2.8	8	1.5	0.5-4.1	51	2.1	1.3-3.1
>1 mild TBI, n = 4,569									
Age-adjusted model ^b	20	8.3	5.3-13.1	3	3.9	1.3-12.3	17	10.4	6.3-17.2
Minimally adjusted model ^c	19	2.1	1.3-3.4	3	2.8	0.9-9.1	17	2.0	1.2-3.4
Model adjusted for all confounders ^d	18	1.8	1.1-3.0	3	2.5	0.8-8.1	15	1.7	1.0-2.9
Case–control study ^e	18	2.4	1.4-4.1	3	_		15	2.1	1.2-3.8
1 severe TBI, n = 5,982									
Age-adjusted model ^b	25	7.9	5.2-11.9	1	1.0	0.1-7.1	24	11.4	7.4-17.5
Minimally adjusted model ^c	25	2.9	1.9-4.5	1	0.8	0.1-5.6	24	3.4	2.2-5.3
Model adjusted for all confounders ^d	25	2.3	1.5-3.6	1	0.7	0.1–5.2	24	2.6	1.6-4.1
Case–control study ^e	25	2.9	1.8-4.6	1	_		24	3.0	1.6-5.3

*Vascular dementia, alcohol dementia, dementia of unspecified type.

^bAdjusted for the influence of age, and place and year of conscription.

^cAdjusted for the variables listed above and overall cognitive function and alcohol intoxication.

^dAdjusted for the variables listed above and weight, height, knee extension strength, TBI in parents, dementia in parents, income, educational level, systolic blood pressure, drug intoxication, depression, and cerebrovascular disease.


⁶For the case–control study, controls were selected using propensity scores based on all confounders listed above. Every subject with 1 mild TBI was matched with 1 control, and every subject with at least 2 mild TBIs or 1 severe TBI was matched with 9 controls. Hazard ratios are adjusted for propensity scores. No case–control study was performed for Alzheimer dementia in subjects with at least 2 mild TBIs or 1 severe TBI, because the cohort included few such cases.

CI = confidence interval; HR = hazard ratio; TBI = traumatic brain injury.

Nordstrom et al, *Ann Neurol* 2014;75:374-381

TABLE 2. Associations between TBIs and the Outcome of Dementia

Swedish Military Conscripts Study

Nordstrom et al, Ann Neurol 2014;75:374-381

Estimate of Population Attributable Risk of Dementia Due to TBI

- Christchurch (New Zealand) Health and Development Study
 - Birth cohort study of 1265 children born in Christchurch in mid-1977
 - Data gathered through regular parental interviews, subject self-report, teacher questionnaires, review of medical and hospital records
 - 1003 completed FU by age 25 (78.3% FU rate)
 - 458 TBI events by age 25
 - 32% prevalence
 - 12% admitted to hospital at least overnight

McKinlay et al, Brain Inj 2008

- Random dialing survey of 2701 residents of Colorado
 - 24% reported one or more TBI with loss of consciousness
 - Of those, reported treatment for most severe TBI:
 - 24% (5.7% of total) were admitted to the hospital at least overnight
 - 38% (8.9% of total) were treated in ED and released
 - 12% (2.9% of total) were seen in doctor's office and released
 - 25% (6% of total) did not seek medical attention

Whiteneck et al, JHTR 2015

Estimate of Population Attributable Risk of Dementia Due to TBI

PAR = p (RR-1) / 1 + p(RR-1)

	Relative Risk					
	1.5	2.0	2.5	3.0		
5%	2.44%	4.76%	6.98%	9.09%		
10%	4.76%	9.09%	13.04%	16.67%		
15%	6.98%	13.04%	18.37%	23.08%		
20%	9.09%	16.67%	23.08%	28.57%		
30%	13.04%	23.08%	31.03%	37.50%		
	10% 15% 20%	5%2.44%10%4.76%15%6.98%20%9.09%	1.52.05%2.44%4.76%10%4.76%9.09%15%6.98%13.04%20%9.09%16.67%	5%2.44%4.76%6.98%10%4.76%9.09%13.04%15%6.98%13.04%18.37%20%9.09%16.67%23.08%		

Dementia after repetitive mild TBI

- Studies of athletes offers several advantages
 - High frequency of concussion
 - Ability to do pre-injury testing in large sample
 - Injuries are usually witnessed
 - Systematic followup feasible
 - Lower frequency of confounders
- Disadvantage
 - Mechanical forces generally lower than in motor vehicle or combat settings

Risk of Dementia after Repeated mild TBI

- Dementia Pugilistica (Martland 1928)

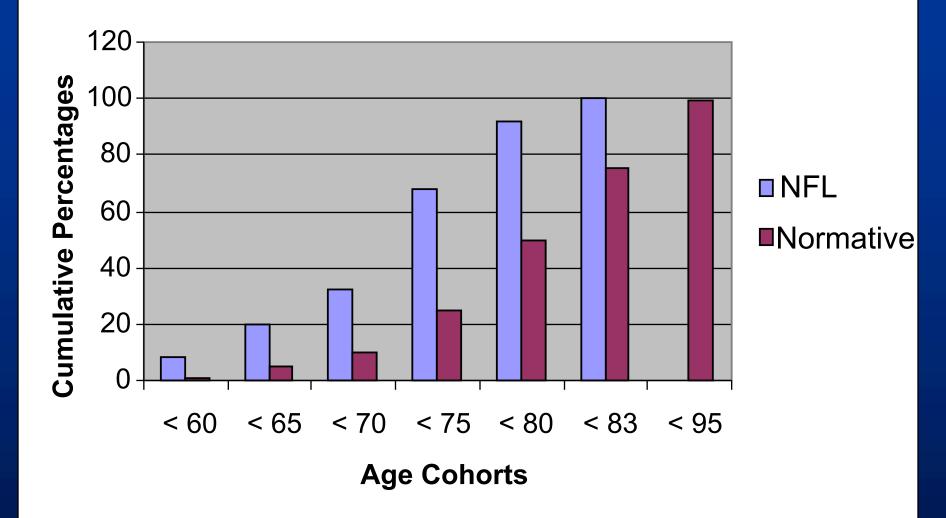
 "Punch drunk syndrome"
 Current term: Chronic Traumatic Encephalopathy
- Prevalence of CTE in boxers approximately 20%
 - No Class I studies
- Higher risk in professional boxers, compared to amateur

Football: The Moral Equivalent of War

- American Football
 - Derived from British prep school game of Rugby
 - Started in 1870s in the Ivy League
 - Faculty and administrators (all Civil War veterans) wanted to provide students the moral formation that combat provides
 - "Moral Equivalent of War"

- 1870's 1905
 - Collegiate football spread rapidly to Midwest, and specially the defeated South
 - Evolved into a very brutal game, with frequent injuries and deaths
 - 18 collegiate football players died in 1905 alone
 - Banned at Columbia, NYU, Northwestern, California, Stanford by 1906
 - Rules committee named at the request of President Theodore Roosevelt
 - Legalized forward pass; outlawed flying wedge formation
 - Committee grew into the National Collegiate Athletic Association

2001 Health Survey of Retired NFL Players


History of concussion from participating in professional football: 61% of all respondents

- Ave no. concussions during pro football career: 2.1
- 24% of respondents sustained 3 or more concussions
- 12% of respondents sustained 5 or more concussions
- 71% reported having returned to play on the same day as their concussion (18% reported this occurrence 3+ times)

16% reported that concussions have a permanent effect on thinking/ memory skills as they get older

MA McCrea, Mild TBI and Postconcussion Syndrome, Oxford Univ. Press, 2008

Recurrent Concussion as Risk for Dementia NFL vs. Normative PAD Age Distribution

MA McCrea, Mild TBI and Postconcussion Syndrome, Oxford Univ. Press, 2008

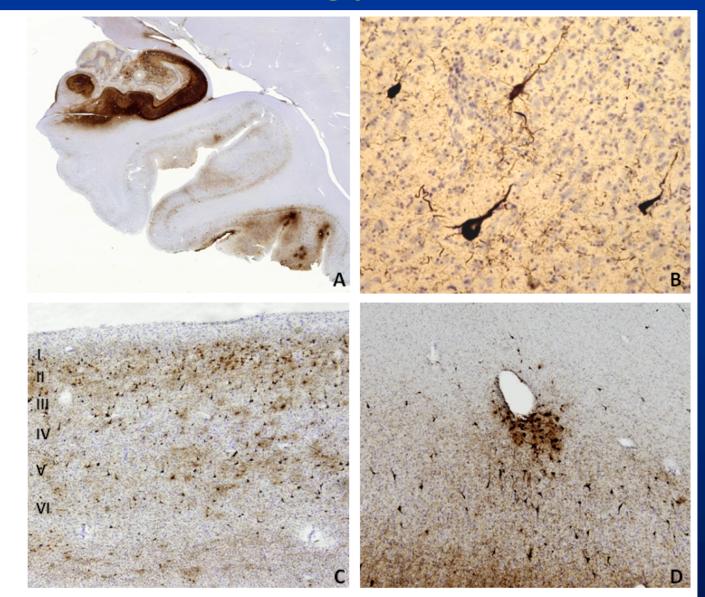
CDC/NIOSH Study or Retired NFL Players

- 3,439 retired NFL players
 - At least 5 credited playing seasons 1959 1988
 - Vital status from pension fund records, IRS, SSA, and National Death Index (NDI)
 - Cause of Death from NDI and State Death Certificates
 - Standardized Mortality Ratio (SMR) adjusted for age, race, and calendar year of death
- Players stratified as to "speed" and "nonspeed" positions
 - Speed: Quarterbacks, running back, halfback, fullback, wide receiver, tight end, defensive back, linebacker
 - Non-speed: All defensive and offensive linemen

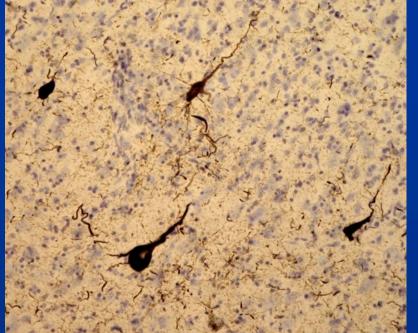
Lehman, EJ et al, Neurology 2012:79:1970-4

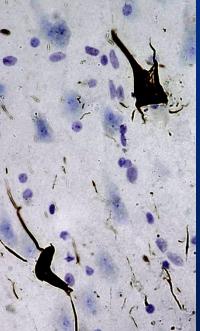
CDC/NIOSH Study or Retired NFL Players

Cause of Death	Underlying			Contributing
	n	SMR (95% CI)	n	SMR (95% CI)
All deaths	334	0.53 (0.48 – 0.59)	782	0.54 (0.51 – 0.58)
All cancers	85	0.58 (0.46 – 0.72)	122	0.63 (0.53 – 0.76)
All cardiovascular causes	126	0.68 (0.56 – 0.81)	340	0.71 (0.64 – 0.79)
All neurodegenerative	10	2.83 (1.36 – 5.21)	17	3.26 (1.90 – 5.22)
Dementia/Alzheimer disease	2	1.80 (0.22 – 6.50)	7	3.86 (1.55 – 7.95)
Amyotrophic Lateral Sclerosis	6	4.04 (1.48 - 8.79)	7	4.31 (1.73 – 8.87)
Parkinson disease	2	2.14 (0.26 – 7.75)	3	1.69 (0.35 – 4.94)
All Injuries	41	0.63 (0.45 – 0.86)	57	0.69 (0.52 – 0.89)
Violence	13	0.27 (0.14 – 0.46)	13	0.26 (0.14 – 0.45)
All other causes	59	0.34 (0.26 – 0.43)	233	0.37 (0.33 – 0.42)

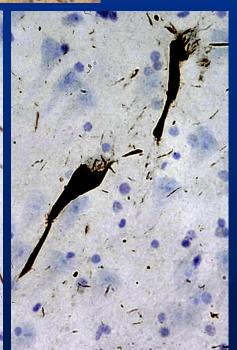

Lehman, EJ et al, Neurology 2012:79:1970-4

CDC/NIOSH Study or Retired NFL Players

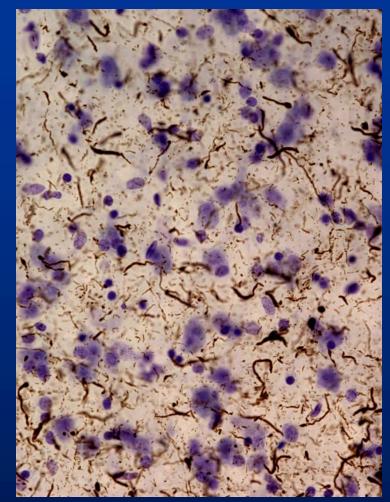

Cause of Death	Non-speed			Speed
	n	SMR (95% CI)	n	SMR (95% CI)
All neurodegenerative	3	1.58 (0.33 – 4.61)	14	4.74 (2.59 – 7.95)
Dementia/Alzheimer disease	1	1.51 (0.04 – 8.41)	6	6.02 (2.21 – 13.1)
Amyotrophic Lateral Sclerosis	1	1.71 (0.04 – 9.50)	6	6.24 (2.29 – 13.6)
Parkinson disease	1	1.53 (0.04 – 8.53)	2	2.01 (0.24 – 7.25)


Lehman, EJ et al, Neurology 2012:79:1970-4

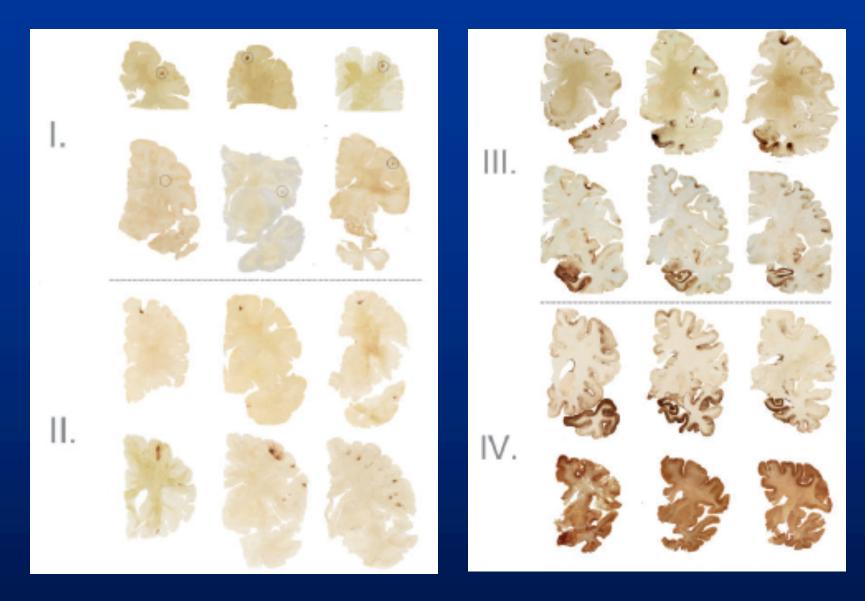
Pathology of CTE



Shively et al, Arch Neurol 2012;69:1245-51

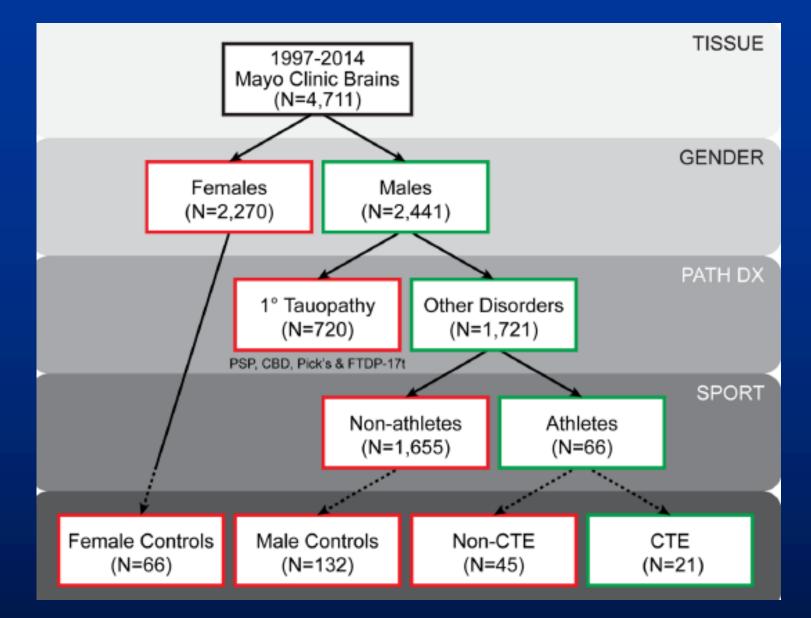


Pathology of CTE


Courtesy of A McKee, D Perl

Clinical	СТЕ	AD
Short term memory deficits early in the course	+	+++
Depression early in the course	+++	+
Abrupt mood swings, explosive rage	++	+/-
Substance abuse	++	-
Parkinsonism late in the course	+++	+/-
Suicidal behaviors	++	-
Pathologic		
Global cerebral atrophy	+/-	++
Fenestrated cavum septum pellucidum	+	-
Neuritic plaques, amyloid- eta deposits	+/-	+++
Neurofibrillary tangles in neocortex	+++	+++
	Predominant	Predominant
	Layers II, III	Layers V, VI
Neurofibrillary tangles in hippocampus and	+++	+++
parahippocampal gyrus	All of Ammon's Horn	Predominantly in CA1
Neurofibrillary tangles in substantia nigra, locus	++	+/-
ceruleus		
Neurofibrillary tangles surrounding small blood	+++	
vessels		

Clinical and Pathologic Features Discriminating between AD and CTE


Shively et al, Arch Neurol 2012;69:1245-51

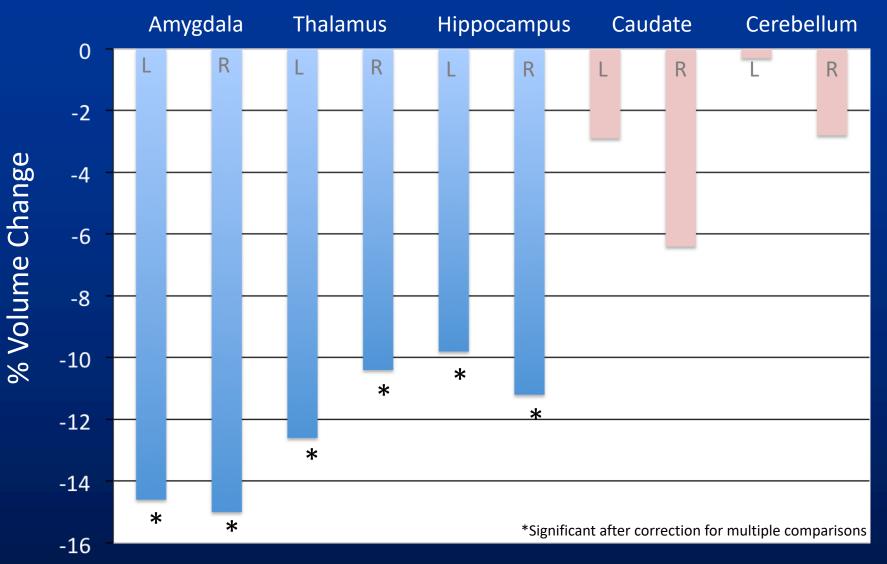
CTE Stages

McKee et al, Brain 2012

CTE in a Neuropathology Brain Bank

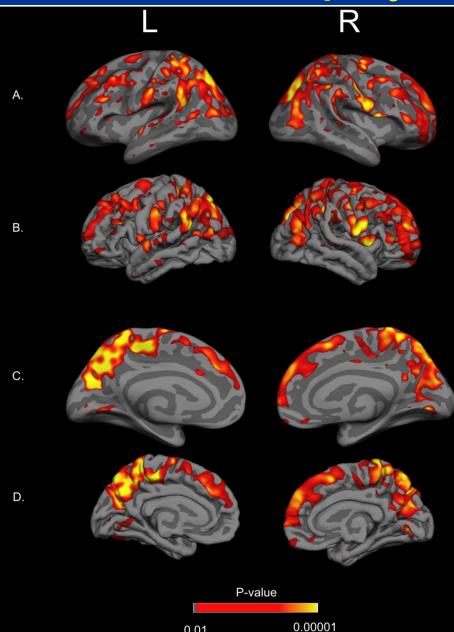
Bieniek et al, Acta Neuropath 2015;130:877-8891

CTE in a Neuropathology Brain Bank


Case #	CTE	Sport	Sport level	Veteran	Education	FHx	Clinical Dx	Path Dx	Onset
1	I	Bk	HS	_	?	_	ALS	ALS	45
2	I	F	HS	-	18	+	FTD	FTLD-FUS	37
3	I	F	HS	+	?	+	ALS	ALS	45
4	I	F	HS	+	16	-	PDD	AD + LBD	65
5	I	F	HS, Co	-	16	-	DLB	LBD	66
6	I	F/Bk/Bb	HS, Co[Bb], sPro[Bb]	+	16	-	MSA	AD + LBD	63
7	I	F/W	HS, Co, Pro[W]	+	16	+	FTD/CVA	AD	?
8	п	?	?	+	16	+	AD	AD	83
9	п	F	?	-	?	-	ALS	ALS	30
10	п	Bb	sPro	+	12	-	NCI	AD	NA
11	п	Bo	Am	-	5	+	AD	AD	75
12	п	F	HS, Co	-	18	-	NCI	AD	NA
13	Π	F	HS, Co	-	16	+	NCI	Normal	NA
14	Π	F	HS, Co	+	15	-	PSP	LBD	73
15	ш	F	HS	-	17	+	AD/PD	AD + LBD	53
16	ш	F	HS	+	14	+	DLB	AD + LBD	70
17	ш	F	HS, Co, Pro	+	16	+	VaD	FTLD-tau	67
18	ш	F/Ru	?	+	16	+	PDD	LBD	65
19	ш	F/Bb	Co	-	16	-	AD	FTLD-tau	75
20	IV	Bo	Pro	+	5	-	AD v DLB	AD	77
21	IV	F/Bk/Bb	HS, Co, sPro[Bb]	+	16	+	PSP	FTLD-tau	60

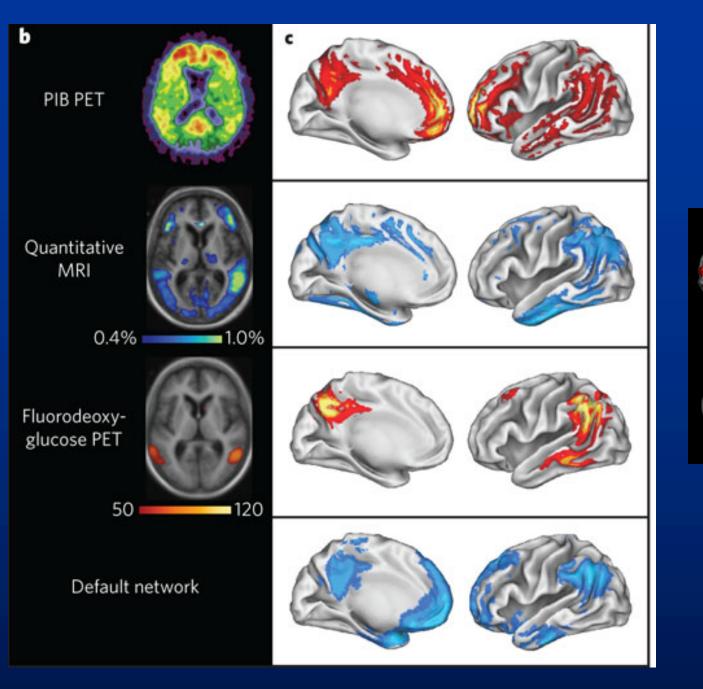
Bieniek et al, Acta Neuropath 2015;130:877-8891

What are long-term consequences of single moderate to severe TBI?


- Regional cerebral atrophy
- Amyloid pathology
- Tau pathology
- Chronic neuroinflammation
- Is TBI associated dementia accelerated AD, CTE-like pathology, or another pathology?

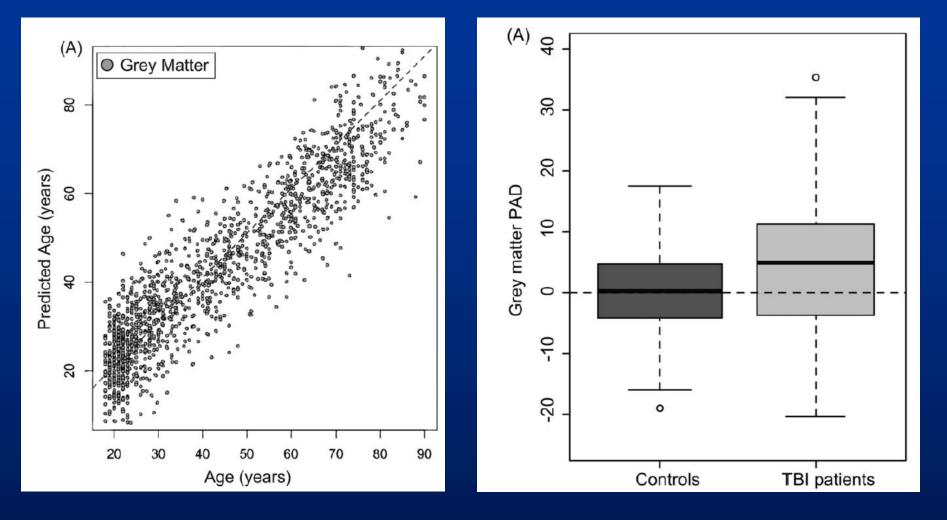
Subcortical atrophy after single TBI

Warner et al, Arch Neurol 2010

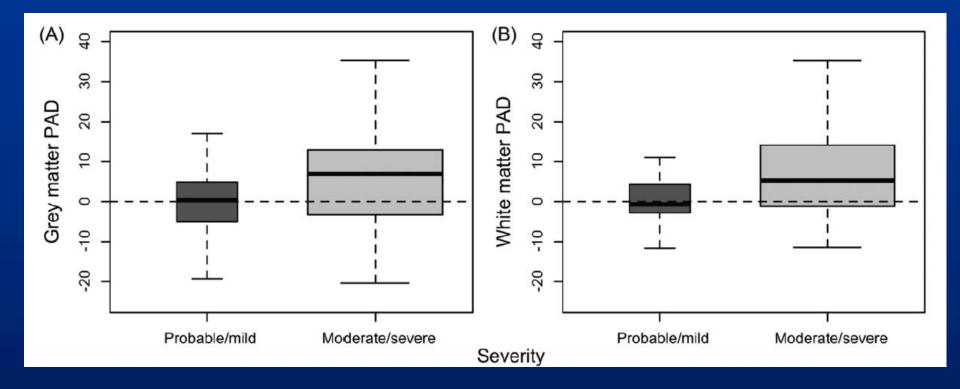

Cortical atrophy after single TBI

0.01

- Cortical atrophy regionally • selective
- Greatest atrophy seen in: igodol
 - Precuneus
 - **Posterior Cingulate**
 - **Superior Parietal Cortex**
 - **Superior Frontal Cortex**


Warner et al. Arch Neurol 2010

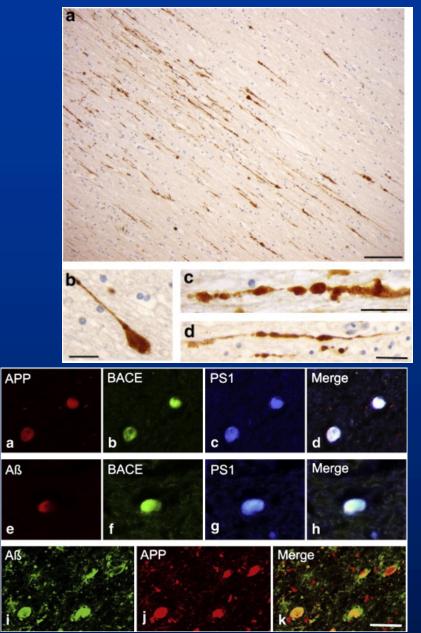
Perrin, Fagan, Holtzman, Nature 461:916-922, 2009


Warner et al, Arch Neurol 2010

TBI Results in Accelerated Brain Aging Volumetric MRI Study

Cole et al, Annals Neurology 2015

TBI Results in Accelerated Brain Aging Volumetric MRI Study

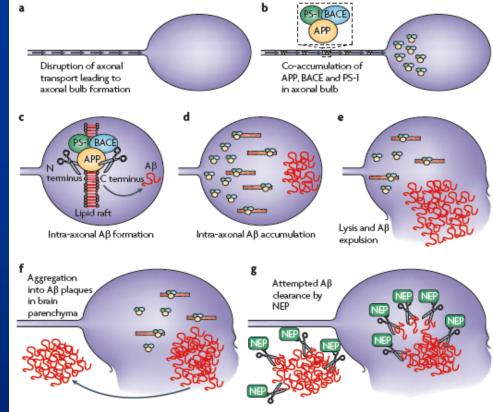
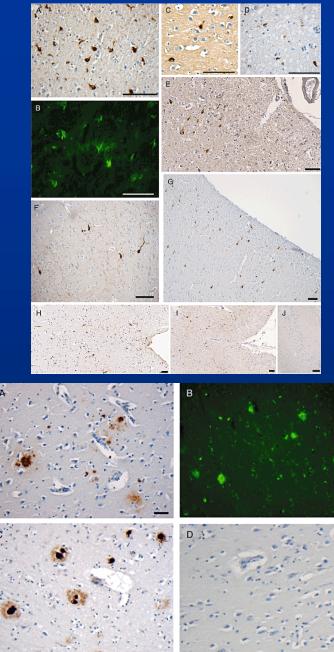

Cole et al, Annals Neurology 2015

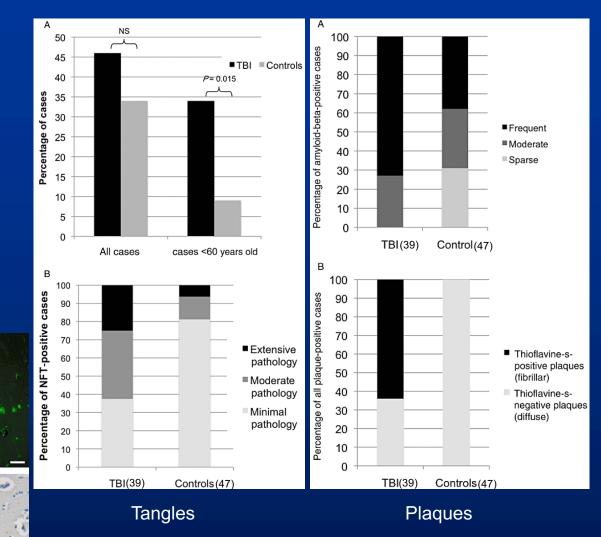
AD-like Pathology after Acute TBI

- Aβ plaques are found in 30% of patients who die acutely following TBI
- Aβ plaques are found in peri-contusional tissue surgically excised within hours of TBI
- Typically diffuse plaques
- Found in grey matter and white matter
- Not known whether these plaques persist or mature into denser neuritic plaques

VE Johnson, W Stewart, DH Smith, *Nature Rev Neurosci* 2010;11:361-370

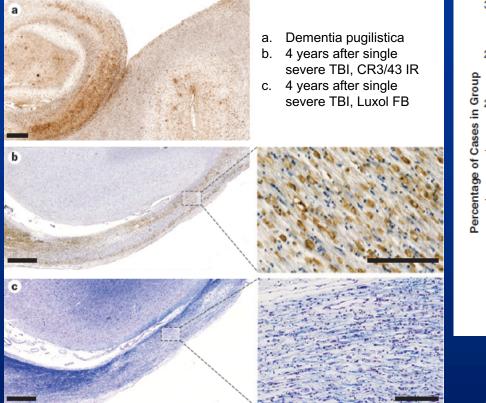
AD-Like Pathology After TBI

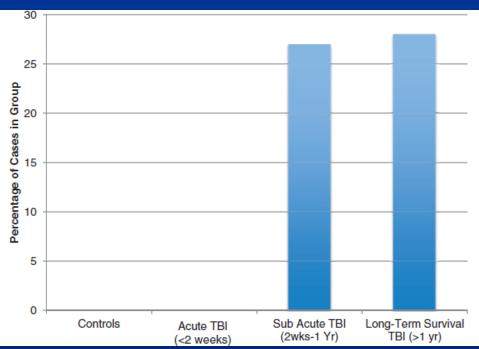




Figure 2 | Potential mechanisms of post-traumatic amyloid- β formation and clearance. a | The mechanical forces that axons are subjected to during a traumatic event can damage axons by directly altering their structure or by initiating detrimental secondary cascades. Failure of axonal transport in these injured axons results in accumulation of multiple proteins that form swellings at their disconnected terminals known as axon bulbs. b | Such protein accumulation has been demonstrated to include the enzymes necessary for the cleavage of amyloid precursor protein (APP) to amyloid- β (A β), including presenilin-1 (PS-1) and β -site APP-cleaving enzyme (BACE). c–d | Although the precise intracellular mechanism of A β genesis remains unclear, lipid rafts have been suggested to be important in allowing APP processing and thus A β accumulation within the axonal compartment. e–f | Injured axons that go on to degenerate and lyse will expel the accumulated A β into the brain parenchyma where it is at risk of aggregating into plaques. g | The enzyme that clears A β , neprilsyin (NEP), also accumulates in damaged axons and probably mitigates the effects of enhanced A β production. The balance of genesis versus catabolism will ultimately determine A β build-up. NEP may potentially act to clear A β within the axonal compartment or in the extracellular space.

VE Johnson, W Stewart, DH Smith, Nature Rev Neurosci 2010;11:361-370

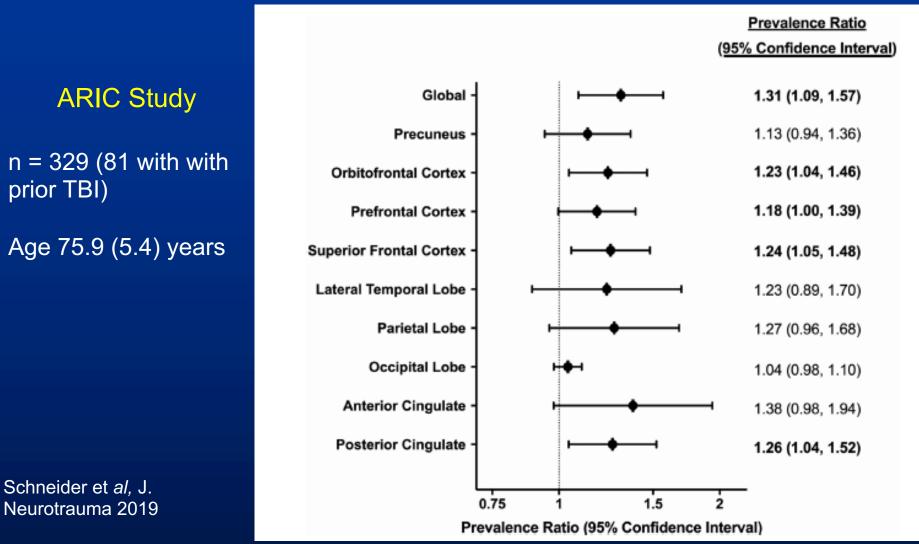
Tau and Amyloid-Beta Pathology Many Years After a Single Traumatic Brain




Injury in Humans

Johnson et al (2012) Brain Pathol 22:142-149

Chronic neuroinflammation in longterm survivors from TBI



Percentage of cases displaying ameboid (Cr3/43 and CD68 immunoreactive cells following TBI survival time versus control subjects

Smith et al (2013) Nat Rev Neurol 9:211-221

Johnson et al (2013) Brain 136:28-42

History of TBI is Associted with increased ¹⁸F-Florbetapir binding

NACC UDS Data

Risk of AD after TBI

	O.R. for AD	95% CI	р
A5, Item 4b1TBI with Brief LOC	0.998	0.883 - 1.1128	0.9963
A5, Item 4b2TBI with Extended LOC A5, Item 4b3TBI with chronic deficit or	1.078	0.896 – 1.298	0.4524
dysfunction	3.060	1.828 – 5.121	<0.0001

	TBI (n = 62)	No TBI (n = 122)	
	(Mean ± SD)	(Mean ± SD)	р
Age	66.9 ± 12.5	64.4 ± 11.0	NS
Clinical Judgment of Symptoms [Cognitive]	Odds Ratio	95% C.I.	p
Memory	0.051	0.003 – 0.933	0.007
Judgment	0.834	0.253 – 2.754	0.765
Language	1.067	0.564 – 2.019	0.872
Visuospatial Function	0.889	0.469 – 1.687	0.746
Attention	1.510	0.785 – 2.905	0.251
Fluctuating Cognition	11.52	0.556 – 238.5	0.066
Clinical Judgment of Symptoms [Motor]	Odds Ratio	95% C.I.	P
Gait Disorder	4.594	2.198 – 9.600	<0.0001
Falls	6.886	2.694 – 17.60	<0.0001
Tremor	2.909	1.247 – 6.787	0.0160
Slowness	3.962	1.988 – 7.899	0.0001
Other Neurologic Conditions	Odds Ratio	95% C.I.	ρ
Seizures	45.19	2.580 – 791.6	<0.0001

	TBI (n = 62)	No TBI (n = 122)	
	(Mean ± SD)	(Mean ± SD)	р
Clinical Judgment of Symptoms [Behavior]	Odds Ratio	95% C.I.	P
Apathy	1.107	0.583 – 2.102	0.870
Depression	2.039	1.057 – 3.931	0.044
Psychosis	2.038	1.162 – 3.574	0.015
Disinhibition	2.637	1.150 – 6.048	0.031
Irritability	2.106	1.096 – 4.049	0.031
Agitation	2.100	0.967 – 4.560	0.070
Personality Change	3.505	1.624 – 7.566	0.002
REM Sleep Behavior Disorder	3.200	0.266 – 38.45	0.556

	TBI (n = 62)	No TBI (n = 122)	
	(Mean ± SD)	(Mean ± SD)	р
Behavioral Assessment	Odds Ratio	95% C.I.	p
Delusions	1.439	0.696 – 2.977	0.346
Hallucinations	1.254	0.489 – 3.216	0.631
Agitation	2.073	1.095 – 3.925	0.033
Depression	2.229	1.185 – 4.194	0.016
Anxiety	1.429	0.765 – 2.667	0.270
Elation	2.533	0.740 8.671	0.185
Apathy	1.826	0.962 – 3.466	0.080
Disinhibition	2.043	1.000 – 4.174	0.060
Irritability	1.934	1.032 – 3.627	0.041
Motor Disturbances	1.217	0.612 – 2.420	0.597
Nighttime Behaviors	2.400	1.263 – 4.559	0.009
Appetite	1.159	0.591 – 2.273	0.730

NACC Pathologic Diagnosis

For 20 deaths with NACC pathology data

Pathologic Findings comparing the TBI with Chronic Deficit or Dysfunction and No TBI Group

Ordinal Measures	X ²	df	р
CERAD Neuritic Plaque Score	8.99	3	0.029
Braak and Braak Stage	2.85	6	0.826
NIA-Reagan Likelihood of Dementia due to AD	3.85	2	0.146
DLB Clinical Syndrome due to DLB Pathology	3.14	2	0.209
Dichotomized Measures	0.R.	95% C.I.	р
Amyloid Angiopathy Dichotomized	0.13	0.026 – 0.674	0.026
Braak and Braak Dichotomized	0.73	0.591 – 3.380	1.000

Sayed et al, J. Neurotrauma 2013

TBI in Population Based Dementia Brain Banks

Table 3. Separate Adjusted Associations Between TBI With LOC and Neuropathologic Findings in ACT and in ROS and MAP^a

	ACT (N = 525)				ROS and MAP (N = 1064)			
	TBI With LOC ≤1 h (n = 80)		TBI With LOC >1 h (n = 14)		TBI With LOC ≤1 h (n = 96)		TBI With LOC >1 h (n = 23)	
Outcome	RR (95% CI) ^a	P Value	RR (95% CI) ^b	P Value	RR (95% CI) ^b	P Value	RR (95% CI) ^b	P Value
Braak stage V or VI	1.22 (0.86-1.73)	.26	1.11 (0.61-2.00)	.74	0.87 (0.55-1.37)	.54	0.85 (0.35-2.06)	.71
CERAD intermediate or frequent	1.01 (0.79-1.29)	.92	0.67 (0.36-1.25)	.21	1.01 (0.78-1.31)	.93	1.16 (0.73-1.85)	.54
Amyloid angiopathy	1.08 (0.73-1.59)	.71	1.02 (0.47-2.20)	.96	1.10 (0.88-1.39)	.41	1.11 (0.72-1.71)	.63
Cystic infarcts	0.83 (0.56-1.24)	.37	1.05 (0.52-2.12)	.88	0.95 (0.68-1.33)	.77	1.24 (0.71-2.15)	.45
Hippocampal sclerosis	0.93 (0.41-2.10)	.86	2.34 (1.02-5.30)	.04	0.84 (0.37-1.93)	.68	0.49 (0.07-3.52)	.48
Cerebral microinfarcts								
Any	0.87 (0.64-1.19)	.39	1.23 (0.73-2.09)	.44	1.03 (0.72-1.46)	.88	1.18 (0.63-2.21)	.61
Any cortical	0.92 (0.65-1.31)	.64	1.12 (0.57-2.18)	.74	0.89 (0.53-1.48)	.66	2.12 (1.12-4.01)	.02
Any deep	0.89 (0.60-1.33)	.58	1.67 (0.95-2.93)	.08	1.16 (0.77-1.76)	.48	1.07 (0.47-2.40)	.88
Lewy bodies								
Any	0.93 (0.55-1.59)	.80	2.64 (1.40-4.99)	.003	1.04 (0.67-1.62)	.85	0.95 (0.39-2.31)	.91
Substantia nigra and/or locus ceruleus	0.96 (0.51-1.80)	.89	3.30 (1.71-6.38)	<.001	1.09 (0.69-1.71)	.82	0.82 (0.31-2.22)	.70
Frontal or temporal cortex	1.49 (0.61-3.64)	.38	5.73 (2.18-15.0)	<.001	1.64 (1.00-2.70)	.051	0.74 (0.18-3.00)	.67
Amygdala and/or limbic ^c	1.30 (0.75-2.24)	.35	1.89 (0.69-5.19)	.22	1.16 (0.73-1.84)	.91	0.91 (0.34-2.44)	.85

Crane et al, JAMA Neurology 2016

TBI in Population Based Dementia Brain Banks

Table 5. Adjusted Associations Between TBI With LOC at Younger Than 25 Years and Neuropathologic Findings From Joint Analysis of Data From All 3 Studies^a

	TBI With LOC <1 h (n = 67)		TBI With LOC ≥1 h (n = 19)		
Outcome ^b	RR (95% CI) ^c	P Value	RR (95% CI) ^c	P Value	
Braak stage V or VI	1.00 (0.66-1.52)	.99	1.03 (0.50-2.14)	.94	
CERAD criteria intermediate or frequent	1.09 (0.89-1.32)	.41	0.91 (0.62-1.35)	.65	
Amyloid angiopathy	1.07 (0.89-1.29)	.44	0.86 (0.62-1.20)	.38	
Cystic infarcts	0.83 (0.58-1.21)	.33	0.84 (0.45-1.60)	.60	
Hippocampal sclerosis	1.42 (0.68-2.97)	.35	1.33 (0.37-4.76)	.66	
Cerebral microinfarcts					
Any	1.04 (0.78-1.40)	.77	1.66 (1.19-2.32)	.003	
Any cortical	1.10 (0.77-1.57)	.60	1.29 (0.71-2.35)	.41	
Any deep	1.06 (0.72-1.58)	.76	1.24 (0.64-2.40)	.53	
Lewy bodies					
Any	0.95 (0.56-1.62)	.86	1.86 (1.03-3.35)	.04	
Substantia nigra or locus ceruleus	1.03 (0.59-1.80)	.91	1.84 (0.94-3.60)	.08	
Frontal or temporal cortex	1.53 (0.77-3.03)	.23	2.53 (1.02-6.24)	.045	
Amygdala and/or limbic ^d	1.09 (0.60-1.98)	.78	1.77 (0.86-3.64)	.12	

Crane et al, JAMA Neurology 2016

Conclusions

- TB is a risk factor for late-life dementia
- Unclear whether TBI accelerates AD neuropathology or whether it results in a distinct neuropathology
 - Indications that TBI is associated with increased rate of psychiatric, behavioral, and motor clinical endophenotypes
 - Pathology may be a distinct
- Whether similar pathology occurs after repetitive mTBI or single moderate to severe TBI remains to be determined

Collaborators

- University of Pennsylvania Clinical TBI Initiative
 - Danielle Sandsmark
 - Margalit Haber
 - Michael Sangobowale
 - Megan Moyer
 - Tawny Meredith-Duliba
 - Erika Silverman
 - Yale Gong
 - Ryan Challender
- Center for Neuroscience
 and Regenerative Medicine
 - Carol Moore
 - Kimbra Kenney
 - Franck Amyot
 - Dan Perl
 - Tanya Bogoslovsky
 - Bao-Xi Qu
 - Christine Turtzo
 - Larry Latour
 - Dzung Pham
 - John Butman

- ImmuneArray, Inc
 - Donna Edmonds
 - Tim Van Meter
 - Nazanin Mirshani
- Univ. of Texas Southwestern
 - Josh Gatson
 - Christopher Madden
- University of Michigan
 - Fred Korley
- Baylor College of Medicine
 - Frank Peacock
- Johns Hopkins University
 - Hanzhang Lu
- NIH
 - U01 NS086090
 - R01 HD48179
 - U01 HD42652
 - R01 AG17861
- Department of Defense
 - CNRM/MNCoE
 - TED
 - CENC

Penn TBI Clinical Research Initiative

